机器视觉(AOI)之传统 CV 技术的优势

发布时间:2021-05-18

机器视觉(AOI)之传统 CV 技术的优势


这部分将详细介绍基于特征的传统方法在 CV 任务中能够有效提升性能的原因。这些传统方法包括:



特征描述子(如 SIFT 和 SURF)通常与传统机器学习分类算法(如支持向量机和 K 最近邻算法)结合使用,来解决 CV 问题。


深度学习有时会「过犹不及」,传统 CV 技术通常能够更高效地解决问题,所用的代码行数也比深度学习少。SIFT,甚至简单的色彩阈值和像素计数等算法,都不是特定于某个类别的,它们是通用算法,可对任意图像执行同样的操作。与之相反,深度神经网络学得的特征是特定于训练数据的。也就是说,如果训练数据集的构建出现问题,则网络对训练数据集以外的图像处理效果不好。

因此,SIFT 等算法通常用于图像拼接/3D 网格重建等应用,这些应用不需要特定类别知识。这些任务也可以通过训练大型数据集来实现,但是这需要巨大的研究努力,为一个封闭应用费这么大劲并不实际。在面对一个 CV 应用时,工程师需要培养选择哪种解决方案的常识。例如,对流水线传送带上的两类产品进行分类,一类是红色一类是蓝色。深度神经网络需要首先收集充足的训练数据。然而,使用简单的色彩阈值方法也能达到同样的效果。一些问题可以使用更简单、快速的技术来解决。


如果 DNN 对训练数据以外的数据效果不好,怎么办?在训练数据集有限的情况下,神经网络可能出现过拟合,无法进行有效泛化。手动调参是非常困难的事情,因为 DNN 拥有数百万参数,且它们之间的关系错综复杂。也因此,深度学习模型被批评为黑箱。传统的 CV 技术具备充分的透明性,人们可以判断解决方案能否在训练环境外有效运转。CV 工程师了解其算法可以迁移至的问题,这样一旦什么地方出错,他们可以执行调参,使算法能够有效处理大量图像。


现在,传统 CV 技术常用于解决简单问题,这样它们可在低成本微处理器上部署,或者通过突出数据中的特定特征、增强数据或者辅助数据集标注,来限定深度学习技术能解决的问题。本文稍后将讨论,在神经网络训练中可使用多少种图像变换技术。最后,CV 领域存在很多更具挑战性的难题,比如机器人学、增强现实、自动全景拼接、虚拟现实、3D 建模、运动估计、视频稳定、运动捕捉、视频处理和场景理解,这些问题无法通过深度学习轻松实现,但它可以从传统 CV 技术中受益。


郑重声明:
1、部分内容来源于网络,本文版权归原作者所有,转载文章仅为传播更多信息之目的。
2、本文仅供学术交流,非商用。如果某部分不小心侵犯了大家的利益,请联系删除。

上一篇:机器视觉(AOI)之传统 CV 技术与深度学习的融合 下一篇:机器视觉(AOI)之传统计算机视觉 CV 技术
  广东吉洋视觉技术有限公司 所有版权
  技术支持【东莞网站建设